
 

 

  
Abstract—The main aim of this paper is to present an approach 

for robust stabilization of interval plants by means of closed-loop 
control systems with two feedback controllers. The control synthesis 
is based on the polynomial technique and subsequent graphical 
robust stability analysis utilizes the combination of the value set 
concept with the zero exclusion condition. The presented set of 
examples for second and third order interval plants illustrates design 
and tuning of various controllers and elucidates investigation of 
robust stability through the graphical tests. Finally, the obtained 
results are confirmed by the control simulations. 
 
Keywords—Two Feedback Controllers, Interval Systems, 

Polynomial Method, Robust Stability Analysis. 

I. INTRODUCTION 
HE control system with two feedback controllers 
represents a relatively general structure in which the 

weight coefficients for two individual controllers can be 
selected [1], [2]. Two extreme cases of this choice then 
correspond either to classical one-degree-of-freedom (1DOF) 
control loop or (under some presumptions) to two-degree-of-
freedom (2DOF) configuration. Thus, this structure offers 
more facilities in controller tuning. However, the robustness 
of the loop with two feedback controllers and some family of 
controlled plants has not been studied in many research works 
so far (for some robustness problems see e.g. [3] – [5]). 

The principal goal of this paper is to demonstrate utilization 
of a graphical robust stability analysis for closed control loops 
with two feedback controllers and interval plants. The applied 
control design method is based on the polynomial approach 
[1], [2] and solution of Diophantine equations [6]. Subsequent 
robust stability tests of the resulting closed-loop characteristic 
polynomials with affine linear uncertainty structure employ 
the well known combination of the value set concept and the 
zero exclusion condition [7]. The simulation examples show 
design and tuning of various sets of two feedback controllers 
for the second and third order interval plants, followed by 
graphical robust stability analysis and control simulation for 
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several “sampled” representatives of the controlled plant 
family with interval uncertainty. A previous version of this 
paper was presented at the conference [8]. 

The paper is organized as follows. In Section 2, the control 
structure with two feedback controllers is briefly described. 
The Section 3 then offers the fundamentals on applied 
polynomial approach to control design and tuning. A 
graphical technique for robust stability analysis of systems 
with parametric uncertainty is outlined in Section 4. Further, 
several simulation examples for second and third order 
interval plants are presented in the extensive Section 5. And 
finally, Section 6 provides some conclusion remarks. 

II. CONTROL SYSTEMS WITH TWO FEEDBACK CONTROLLERS 
The diagram of the control system with two feedback 

controllers adopted from [1], [2] with referred original 
inspiration in [9] is depicted in Fig. 1. 
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Fig. 1 control loop with two feedback controllers 

 
The blocks CR and CQ represent two controllers and G stands 

for a controlled plant. The symbols of the signals have the 
following meaning: w – reference signal, e – tracking (control) 
error, u0 – difference of controllers’ outputs, u – control 
signal, y – controlled signal (output), v – load disturbance. 

The controllers are supposed to be described by transfer 
functions: 

 
( )( )
( )Q

q sC s
p s

=  (1) 

 
( )( )
( )R

r sC s
p s

=  (2) 

 
and controlled plant is given by: 
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( )( )
( )

b sG s
a s

=  (3) 

III. CONTROL DESIGN 
A polynomial method is used for control design [1], [2]. It 

should fulfill the basic requirements such stability and internal 
properness of the control system, asymptotic tracking of the 
reference signal and load disturbance rejection. 

Laplace transforms of basic signals from Fig. 1 can be 
obtained as follows [2]: 

 

[ ]( )( ) ( ) ( ) ( ) ( )
( )

b sY s r s W s p s V s
d s

= +  (4) 

 

[ ]{ }1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

E s a s p s b s q s W s b s p s V s
d s

= + −  (5) 

 

[ ]( )( ) ( ) ( ) ( ) ( )
( )

a sU s r s W s p s V s
d s

= +  (6) 

 
where d(s) is the closed-loop characteristic polynomial: 

 
[ ]( ) ( ) ( ) ( ) ( ) ( )d s a s p s b s r s q s= + +  (7) 

 
Simple substitution 
 

( ) ( ) ( )t s r s q s= +  (8) 
 

leads to the Diophantine equation: 
 

( ) ( ) ( ) ( ) ( )a s p s b s t s d s+ =  (9) 
 

which is critical for control design. 
Stability of control loop from Fig. 1 is guaranteed for 

polynomials ( )p s  and ( )t s  obtained as a solution of the 
Diophantine equation (9) with a stable right-hand polynomial 
d(s). 

In this paper, both reference w and load disturbance v are 
supposed as stepwise signals with general Laplace transforms: 

 
0

0

( )

( )

wW s
s

vV s
s

=

=

 (10) 

 
Under this scenario, the asymptotic tracking and load 

disturbance rejection are ensured by divisibility of both terms 
[ ]( ) ( ) ( ) ( )a s p s b s q s+  and ( )p s  from tracking error equation 
(5) by the term s. Obviously, it is fulfilled for the following 
forms of polynomials ( )p s  and ( )q s : 

 
( ) ( )
( ) ( )

p s sp s
q s sq s

=
=

 (11) 

Consequently, the controllers’ transfer functions (1) and (2) 
can be written as: 

 
( )( )
( )Q

q sC s
p s

=  (12) 

 
( )( )
( )R

r sC s
sp s

=  (13) 

 
Since the transfer functions of all components of the control 

system are supposed to be proper, the following inequalities 
must hold true: 

 
deg deg
deg deg 1

q p
r p

≤
≤ +

 (14) 

 
The Diophantine equation (9) can be simply rewritten to: 
 

( ) ( ) ( ) ( ) ( )a s sp s b s t s d s+ =  (15) 
 

and the polynomial t (8) can be expressed as: 
 

( ) ( ) ( )t s r s sq s= +  (16) 
 
The degrees of polynomials in equations (15) and (16) can 

be derived (assuming their solvability) [2]: 
 

deg deg deg
deg deg 1
deg deg 1
deg 2 deg

t r a
q a
p a
d a

= =
= −
≥ −
≥

 (17) 

 
The forms of polynomials ( )t s , ( )r s  and ( )q s  are:  
 

0

0

1

1

( )

( )

( )

n
i

i
i

n
i

i
i

n
i

i
i

t s t s

r s r s

q s q s

=

=

−

=

=

=

=

∑

∑

∑

 (18) 

 
with basic relations among their coefficients [2]: 

 
0 0

for 1, ,i i i

r t
r q t i n

=
+ = = …

 (19) 

 
Coefficients of the polynomials ( )r s  and ( )q s  can be 

obtained on the basis of calculated polynomial ( )t s  and 

adjustable coefficients 0,1iγ ∈  according to: 
 

( )
for 1, ,

1 for 1, ,
i i i

i i i

r t i n
q t i n

γ
γ

= =
= − =

…
…

 (20) 
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Obviously, the coefficients iγ  represent the weights for 
numerators of transfer functions (12) and (13). The unit 
parameters iγ  for all i reduce the control system (Fig. 1) to 
standard 1DOF configuration ( ( ) 0QC s = ). On the other hand, 

if all 0iγ =  and moreover reference and load disturbance are 
stepwise signals, the control system corresponds to 2DOF 
control structure [2]. 

Primarily, the control behaviour can be influenced by 
selection of right-hand polynomial d(s) in Diophantine 
equation (15). In this contribution, just the simplest method 
with multiple real roots will be utilized. 

IV. SYSTEMS WITH PARAMETRIC UNCERTAINTY: ROBUST 
STABILITY ANALYSIS 

Systems with parametric uncertainty suppose known fixed 
structure but on the other hand imprecise knowledge of real 
physical parameters. Typically, such parameters are bounded 
by intervals with minimal and maximal possible values. 
General transfer function describing a system with parametric 
uncertainty has a form: 

 
( , )( , )
( , )

b s qG s q
a s q

=  (21) 

 
where ( , )b s q  and ( , )a s q  are polynomials with coefficients 
depending on vector of real uncertain parameters q which is 
typically bounded by some uncertainty bounding set 
(frequently by using L∞  norm). 

A common practically used case of system with parametric 
uncertainty is represented by an interval plant: 

 

0

0

;
( , , )

;

m
i

i i
i
n

i
i i

i

b b s
G s b a

a a s

− +

=

− +

=

⎡ ⎤⎣ ⎦
=

⎡ ⎤⎣ ⎦

∑

∑
 (22) 

 
with mutually independent parameters defined by means of 
their lower and upper limits. 

The main object of interest from the viewpoint of robust 
stability is uncertain closed-loop characteristic polynomial: 

 

0
( , ) ( )

n
i

i
i

p s q q sρ
=

= ∑  (23) 

 
where ( )i qρ  are coefficient functions. Corresponding family 
of closed-loop characteristic polynomials can be written as: 

 
{ }( , ) :P p s q q Q= ∈  (23) 

 
The robust stability of this family of polynomials means 

that ( , )p s q  is stable for all q Q∈ . However, direct 
calculation of roots could take extremely long computation 
times and thus the more sophisticated methods are studied. 

The choice of specific technique for robust stability analysis 
depends mainly on the uncertainty structure. The higher level 
of relation among coefficients yields more complicated 
investigation and usually requires more powerful and effective 
tools. Nonetheless, there is a graphical method based on 
combination of the value set concept and the zero exclusion 
condition available [7]. It is applicable for the wide range of 
uncertainty structures, including the very complicated ones. 

According to [7], the value set at given frequency ω ∈  is: 
 

{ }( , ) ( , ) :p j Q p j q q Qω ω= ∈  (24) 
 

Practical creation of the value sets can be performed by 
substituting s for ω ∈ , fixing ω ∈  and letting q range 
over Q. 

The zero exclusion condition for Hurwitz stability of family 
of continuous-time polynomials (23) is defined [7]: Suppose 
invariant degree of polynomials in the family, pathwise 
connected uncertainty bounding set Q, continuous coefficient 
functions ( )k qρ  for 0,1, 2, ,k n= …  and at least one stable 

member 0( , )p s q . Then the family P is robustly stable if and 
only if: 

 
0 ( , ) 0p j Qω ω∉ ∀ ≥  (25) 

 
The detailed information on robust stability analysis under 

parametric uncertainty can be found in [7] and subsequently 
e.g. in [10], [11]. 

V. SIMULATION EXAMPLES 

A. Second Order Interval Plant 
Initially, suppose a controlled plant described by the second 

order interval transfer function: 
 

[ ]
[ ] [ ] [ ]2

0.4,1.6
( , , )

0.4,1.6 0.4,1.6 0.4,1.6
G s b a

s s
=

+ +
 (26) 

 
The nominal system, used for a controller design, is 

assumed to have the average values: 
 

2

1( )
1NG s

s s
=

+ +
 (27) 

 
so the interval family contains all parameter perturbations of 
the size 60%± . 

The Diophantine equation (15) takes the form: 
 

( ) ( ) ( ) ( )42 2
1 0 2 1 01s s s p s p t s t s t s m+ + + + + + = +  (28) 

 
i.e. it is considered as a polynomial with quadruple roots. 

First, the roots are chosen as -0.85, which means 0.85m = . 
Besides, the coefficients from (20) are supposed 1 2 0.5γ γ= = . 
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Thus, the final controllers are: 
 

0.4675 0.0283( )
2.4Q

sC s
s

+=
+

 (29) 

 
2

2

0.4675 0.0283 0.522( )
2.4R

s sC s
s s
+ +=

+
 (30) 

 
The corresponding family of closed-loop characteristic 

polynomials (with affine linear uncertainty structure) is: 
 

( )
( ) ( )

4 3
2 2 1

2
1 0 0 0 0 0

( , , ) 2.4

2.4 0.935 2.4 0.0565 0.522
CLp s a b a s a a s

a a b s a b s b

= + + +

+ + + + + +
 (31) 

 
where 2 1 0 0, , , 0.4,1.6a a a b ∈  are taken from (26). 

The value sets for the family of polynomials (31) and 
frequency range from 0 to 3 with step 0.05 are depicted in Fig. 
2 while its zoomed version (in order to see better a closer 
neighborhood of the complex plane origin) is shown in Fig. 3. 
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Fig. 2 value sets for family of closed-loop characteristic polynomials 

(31) – full view 
 

-8 -6 -4 -2 0 2
-4

-3

-2

-1

0

1

2

3

Real Axis

Im
ag

in
ar

y 
A

xi
s

 
Fig. 3 value sets for family of closed-loop characteristic polynomials 

(31) – zoomed view 

It is clearly distinguishable (Fig. 3) that the zero point is 
included in the value sets. Consequently, the family of closed-
loop characteristic polynomials (31) is not robustly stable. 

The Fig. 4 shows the simulations of the output signals of 
256 “sampled plants” from the interval family (26). All four 
interval parameters were divided into 3 subintervals of the 
equal size and so the obtained 4 values for 4 parameters lead 
to 44 256=  plants for simulation. Moreover, the red curve 
represents the output signal of the nominal plant (27). Besides, 
the stepwise reference signal changing from 1 to 2 in the first 
third of the simulation time and step load disturbance -0.5 
affecting the input to the controlled plant during the last third 
of simulation are supposed. 
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Fig. 4 control of “sampled plants” from interval family (26) by two 

feedback controllers (29) and (30) 
 
As can be seen from Fig. 4, although some members of the 

family (26) are robustly stabilized (e.g. nominal system) by 
two feedback controllers (29) and (30), the other members are 
not so the system is really robustly unstable as had been 
already proven by Figs. 2 and 3. 

The selection of coefficients iγ  do not influence the robust 
stability of the control loop with two feedback controllers as 
the polynomial t(s) remains the same. It would change “only” 
control performance but the system remains either robustly 
stable or robustly unstable for all possible iγ . 

Now, different quadruple roots are supposed, i.e. 1.3m = . 
The weight coefficients are considered again as 1 2 0.5γ γ= = . 
This results in controllers: 

 
2.47 2.294( )

4.2Q
sC s

s
+=

+
 (32) 

 
2

2

2.47 2.294 2.8561( )
4.2R

s sC s
s s

+ +=
+

 (33) 

 
and subsequently in the family of closed-loop characteristic 
polynomials: 
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( )
( ) ( )

4 3
2 2 1

2
1 0 0 0 0 0

( , , ) 4.2

4.2 4.94 4.2 4.588 2.8561
CLp s a b a s a a s

a a b s a b s b

= + + +

+ + + + + +
 (34) 

 
with 2 1 0 0, , , 0.4,1.6a a a b ∈  from (26). 

The value sets for this new polynomial family (34) (for 
frequency 0:0.05:4) are shown in Fig. 5 while the closer look 
near the complex plane origin can be seen in Fig. 6. 
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Fig. 5 value sets for family of closed-loop characteristic polynomials 

(34) – full view 
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Fig. 6 value sets for family of closed-loop characteristic polynomials 

(34) – zoomed view 
 
In this case, the Figs. 5 and 6 reveal that the complex plane 

origin is excluded from the value sets. Moreover, the family 
contains a stable member so one can conclude that the closed-
loop characteristic polynomial (34) is robustly stable. 

The output signals simulated under the same conditions as 
for the previous controller are shown in Fig. 7. As can be 
seen, all “sampled plants” are really stabilized by two 
feedback controllers (32) and (33). 
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Fig. 7 control of “sampled plants” from interval family (26) by two 

feedback controllers (32) and (33) 
 
Obviously, a different choice of coefficients iγ  would not 

change the robust stability, again. However, the control 
performance can be influenced by their alteration. For 
example, suppose the same controlled (26) and nominal (27) 
plant, the same quadruple roots 1.3m = , but the weight 
coefficients are modified to 1 2 1γ γ= = . This leads to the new 
controllers: 

 
( ) 0QC s =  (35) 

 
2

2

4.94 4.588 2.8561( )
4.2R

s sC s
s s

+ +=
+

 (36) 

 
which corresponds to standard 1DOF control configuration. 
The simulations of the output signals are shown in Fig. 8. As 
can be seen, they really behave in an expected 1DOF way 
(more “aggressive” responses with higher overshoots). 
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Fig. 8 control of “sampled plants” from interval family (26) by two 

feedback controllers (35) and (36) 
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The second extreme selection of weight coefficients 
1 2 0γ γ= =  corresponds to 2DOF configuration (as the 

reference and load disturbance are stepwise signals). The 
related feedback controllers are now: 

 
4.94 4.588( )

4.2Q
sC s

s
+=

+
 (37) 

 

2
2.8561( )

4.2RC s
s s

=
+

 (38) 

 
The corresponding simulations of the output signals are 

depicted in Fig. 9. The interesting outcome is that the worst 
case responses for the previously tuned controllers (32) and 
(33) (for 1 2 0.5γ γ= = ) have the lower overshoots then the 
worst case responses for this purely 2DOF configuration with 
controllers (37) and (38). 
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Fig. 9 control of “sampled plants” from interval family (26) by two 

feedback controllers (37) and (38) 
 

B. Third Order Interval Plant 
In the second example, the third order interval plant 

adopted from [7] is considered: 
 

[ ] [ ]
[ ] [ ] [ ]3 2

0.75, 1.25 0.75, 1.25
( , , )

2.75, 3.25 8.75, 9.25 0.75, 9.25
s

G s b a
s s s

+
=

+ + +
 (39) 

 
The mean-valued nominal system for a controller design is: 
 

3 2

1( )
3 9 5N

sG s
s s s

+=
+ + +

 (40) 

 
and thus, the Diophantine equation (15) can be written as: 

 
( ) ( )

( )( ) ( )

3 2 2
2 1 0

63 2
3 2 1 0

3 9 5

1

s s s s p s p s p

s t s t s t s t s m

+ + + + + +

+ + + + + = +
 (41) 

 

First, 1.5m =  and 1 2 3 0.5γ γ γ= = =  are selected which 
results in the controllers: 

 
2

2

0.8711 4.1328 4.5664( )
6 5.0078Q

s sC s
s s

− +=
+ +

 (42) 

 
3 2

3 2

0.8711 4.1328 4.5664 11.3906( )
6 5.0078R

s s sC s
s s s

− + +=
+ +

 (43) 

 
The corresponding family of (sixth order) closed-loop 

characteristic polynomials is: 
 

( )
( )
( )
( )
( )

6 5
2

4
1 2 1

3
0 1 2 1 0

2
0 1 1 0

0 1 0 0

( , , ) 6

6 1.7422 5.0078

6 5.0078 8.2656 1.7422

6 5.0078 9.1328 8.2656

5.0078 11.3906 9.1328 11.3906

CLp s a b s a s

a a b s

a a a b b s

a a b b s

a b b s b

= + + +

+ + + + +

+ + + − + +

+ + + − +

+ + + +

 (44) 

 
where parameters ai and bi can vary according to uncertain 
parameters from the plant (39). 

The value sets for the family of polynomials (44) 
(frequency range 0:0.05:5.5) going successively through six 
quadrants are depicted in Fig. 10. Then, Fig. 11 shows its 
zoomed version. 

Since the zero point is included in the value sets, the family 
of closed-loop characteristic polynomials (44) is robustly 
unstable. This is demonstrated also by the Fig. 12 where the 
simulations of the output signals for 53 243=  “sampled 
plants” from the interval family (39) are plotted. As in the 
previous example, the red curve represents the output signal of 
the nominal plant (40). Besides, the step load disturbance -2 
affecting the input to the controlled plant during the last third 
of simulation is assumed. 
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Fig. 10 value sets for family of closed-loop characteristic 

polynomials (44) – full view 
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Fig. 11 value sets for family of closed-loop characteristic 

polynomials (44) – zoomed view 
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Fig. 12 control of “sampled plants” from interval family (39) by two 

feedback controllers (42) and (43) 
 
The Fig. 12 clearly confirms that really only some members 

of the family (39) are stabilized but the other ones are not and 
so the family as a whole is robustly unstable. 

Next, 2.1m =  and 1 2 3 0.5γ γ γ= = =  are supposed. So the 
controllers are: 

 
2

2

9.4321 23.2492 55.9255( )
9.6 9.4858Q

s sC s
s s

+ +=
+ +

 (45) 

 
3 2

3 2

9.4321 23.2492 55.9255 85.7661( )
9.6 9.4858R

s s sC s
s s s

+ + +=
+ +

 (46) 

 
and the corresponding family of closed-loop characteristic 
polynomials is: 

 

( )
( )
( )
( )
( )

6 5
2

4
1 2 1

3
0 1 2 1 0

2
0 1 1 0

0 1 0 0

( , , ) 9.6

9.6 18.8642 9.4858

9.6 9.4858 46.4984 18.8642

9.6 9.4858 111.851 46.4984

9.4858 85.7661 111.851 85.7661

CLp s a b s a s

a a b s

a a a b b s

a a b b s

a b b s b

= + + +

+ + + + +

+ + + + + +

+ + + + +

+ + + +

 (47) 

 
with the uncertain parameters from (39). 

Finally, the full and nearer views of the value sets for the 
family (47) are shown in Figs. 13 and 14, respectively 
(frequency range 0:0.05:8). The existence of a stable member 
and the plotted value sets clearly prove the robust stability of 
(47). 
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Fig. 13 value sets for family of closed-loop characteristic 

polynomials (47) – full view 
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Fig. 14 value sets for family of closed-loop characteristic 

polynomials (47) – zoomed view 
 
The set of corresponding simulations of the output signals 

is visualized in Fig. 15. 
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Fig. 15 control of “sampled plants” from interval family (39) by two 

feedback controllers (45) and (46) 
 

VI. CONCLUSION 
The contribution has been focused on investigation of 

robust stability for closed-loop control systems containing two 
feedback controllers and interval plants by means of plotting 
the value sets and subsequent application of the zero exclusion 
condition. The controller design itself is based on the 
polynomial approach. The computational examples have 
demonstrated analysis and simulation of robustly stable or 
unstable control loops with second or third order interval 
plant. The paper has also shown that the choice of weight 
coefficients for numerators of the individual feedback 
controllers influences “only” control performance but has no 
impact on the robust stability or instability. 
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